KMA315 Analysis 3A: Problems 3

Solutions to these problems should be submitted by 2:00pm on Tuesday the $12^{\text {th }}$ of April 2016.

1. Let:
(i) $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions;
(ii) $S=\{x \in \mathbb{R}: f(x) \geq g(x)\}$; and
(iii) $\left(x_{n}\right)_{n=0}^{\infty}$ be a sequence of points from S.

Show that if $\lim _{n \rightarrow \infty} x_{n}$ exists then $\lim _{n \rightarrow \infty} x_{n} \in S$. (5 marks)
2. Let $f:[0,1] \rightarrow[0,1]$ be the function defined by

$$
f(x)= \begin{cases}x & \text { when } x \in \mathbb{Q} ; \text { and } \\ 1-x & \text { when } x \in \mathcal{C}(\mathbb{Q}) .\end{cases}
$$

Prove that:
(i) f assumes every value between 0 and 1 (ie. that f is surjective); (1 mark)
(ii) f is continuous only at $x=\frac{1}{2}$. (2 marks)
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=0$ for all $x \in \mathbb{Q}$. Establish what value $f(x)$ takes for irrational values of x. (3 marks)

There are more questions over the page...

Nicholas Ham, Room 425
4. Let $\left(f_{n}\right)_{n=0}^{\infty}$ be the sequence of real-valued functions on \mathbb{R} where for each $n \in \mathbb{N}$,

$$
f_{n}(x)=x+\frac{1}{n} \text { for all } x \in \mathbb{R} .
$$

Establish that:
(i) $\left(f_{n}\right)_{n=0}^{\infty}$ converges uniformly on \mathbb{R}; (2 marks)
(ii) $\left(f_{n}^{2}\right)_{n=0}^{\infty}$ does not converge uniformly on \mathbb{R}. (3 marks)

Note: for each $n \in \mathbb{N}, f_{n}^{2}(x)=\left[f_{n}(x)\right]^{2}$ for all $x \in \mathbb{R}$.
5. Let $\left(f_{n}\right)_{n=0}^{\infty}$ be the sequence of real-valued functions on $[0,1]$ where for each $n \in \mathbb{N}$,

$$
f_{n}(x)=x^{n} \text { for all } x \in[0,1] .
$$

(i) Establish whether $\left(f_{n}\right)_{n=0}^{\infty}$ converges pointwise; (1 mark)
(ii) if it does, find the pointwise limit of $\left(f_{n}\right)_{n=0}^{\infty}$. (1 mark)

